3.2871 \(\int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=63 \[ 2 \sqrt{\frac{3}{11}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{10 \sqrt{1-2 x} \sqrt{3 x+2}}{11 \sqrt{5 x+3}} \]

[Out]

(-10*Sqrt[1 - 2*x]*Sqrt[2 + 3*x])/(11*Sqrt[3 + 5*x]) + 2*Sqrt[3/11]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]],
 35/33]

________________________________________________________________________________________

Rubi [A]  time = 0.0166026, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.107, Rules used = {104, 21, 113} \[ 2 \sqrt{\frac{3}{11}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{10 \sqrt{1-2 x} \sqrt{3 x+2}}{11 \sqrt{5 x+3}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*(3 + 5*x)^(3/2)),x]

[Out]

(-10*Sqrt[1 - 2*x]*Sqrt[2 + 3*x])/(11*Sqrt[3 + 5*x]) + 2*Sqrt[3/11]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]],
 35/33]

Rule 104

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegersQ[2*m, 2*n, 2*p]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} (3+5 x)^{3/2}} \, dx &=-\frac{10 \sqrt{1-2 x} \sqrt{2+3 x}}{11 \sqrt{3+5 x}}-\frac{2}{11} \int \frac{9+15 x}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{10 \sqrt{1-2 x} \sqrt{2+3 x}}{11 \sqrt{3+5 x}}-\frac{6}{11} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx\\ &=-\frac{10 \sqrt{1-2 x} \sqrt{2+3 x}}{11 \sqrt{3+5 x}}+2 \sqrt{\frac{3}{11}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )\\ \end{align*}

Mathematica [A]  time = 0.0700702, size = 106, normalized size = 1.68 \[ -\frac{2 \left (-\sqrt{2} (5 x+3) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )+5 \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3}+\sqrt{2} (5 x+3) E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )\right )}{55 x+33} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*(3 + 5*x)^(3/2)),x]

[Out]

(-2*(5*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x] + Sqrt[2]*(3 + 5*x)*EllipticE[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]
], -33/2] - Sqrt[2]*(3 + 5*x)*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2]))/(33 + 55*x)

________________________________________________________________________________________

Maple [C]  time = 0.017, size = 134, normalized size = 2.1 \begin{align*} -{\frac{2}{330\,{x}^{3}+253\,{x}^{2}-77\,x-66}\sqrt{1-2\,x}\sqrt{2+3\,x}\sqrt{3+5\,x} \left ( \sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ({\frac{1}{11}\sqrt{66+110\,x}},{\frac{i}{2}}\sqrt{66} \right ) -\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ({\frac{1}{11}\sqrt{66+110\,x}},{\frac{i}{2}}\sqrt{66} \right ) +30\,{x}^{2}+5\,x-10 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3+5*x)^(3/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2),x)

[Out]

-2/11*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1
/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(66+110*
x)^(1/2),1/2*I*66^(1/2))+30*x^2+5*x-10)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3+5*x)^(3/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((5*x + 3)^(3/2)*sqrt(3*x + 2)*sqrt(-2*x + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{150 \, x^{4} + 205 \, x^{3} + 34 \, x^{2} - 51 \, x - 18}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3+5*x)^(3/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(150*x^4 + 205*x^3 + 34*x^2 - 51*x - 18), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{1 - 2 x} \sqrt{3 x + 2} \left (5 x + 3\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3+5*x)**(3/2)/(1-2*x)**(1/2)/(2+3*x)**(1/2),x)

[Out]

Integral(1/(sqrt(1 - 2*x)*sqrt(3*x + 2)*(5*x + 3)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3+5*x)^(3/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((5*x + 3)^(3/2)*sqrt(3*x + 2)*sqrt(-2*x + 1)), x)